

## **Synonym**

HBEGF, HB-EGF, Heparin-binding EGF-like growth factor, Diphtheria toxin receptor, DT-R, DTR, DTS, HEGFL

## Source

Human HBEGF, His Tag(HBF-H52H3) is expressed from human 293 cells (HEK293). It contains AA Asp 63 - Leu 148 (Accession # Q99075-1).

## **Molecular Characterization**

HBEGF(Asp 63 - Leu 148) Q99075-1

Poly-his

This protein carries a polyhistidine tag at the C-terminus.

The protein has a calculated MW of 11.8 kDa. The protein migrates as 16-23 kDa under reducing (R) condition (SDS-PAGE) due to glycosylation.

### **Endotoxin**

Less than 1.0 EU per  $\mu g$  by the LAL method.

## **Purity**

>90% as determined by SDS-PAGE.

### **Formulation**

Lyophilized from  $0.22~\mu m$  filtered solution in PBS, pH7.4 with trehalose as protectant.

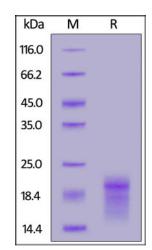
Contact us for customized product form or formulation.

### Reconstitution

Please see Certificate of Analysis for specific instructions.

For best performance, we strongly recommend you to follow the reconstitution protocol provided in the CoA.

### Storage


For long term storage, the product should be stored at lyophilized state at -20°C or lower.

Please avoid repeated freeze-thaw cycles.

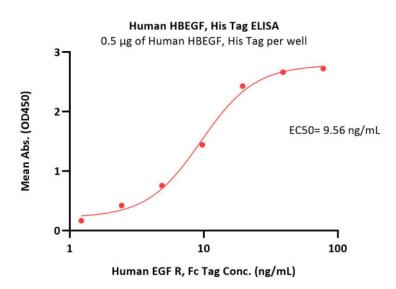
This product is stable after storage at:

- -20°C to -70°C for 12 months in lyophilized state;
- -70°C for 3 months under sterile conditions after reconstitution.

## **SDS-PAGE**



Human HBEGF, His Tag on SDS-PAGE under reducing (R) condition. The gel was stained with Coomassie Blue. The purity of the protein is greater than 90%.


## **Bioactivity-ELISA**



# **Human HBEGF Protein, His Tag**

Catalog # HBF-H52H3





Immobilized Human HBEGF, His Tag (Cat. No. HBF-H52H3) at 5  $\mu$ g/mL (100  $\mu$ L/well) can bind Human EGF R, Fc Tag (Cat. No. EGR-H5252) with a linear range of 1-20 ng/mL (QC tested).

# **Background**

Heparin-binding epidermal growth factor (EGF)-like growth factor (HBEGF) is a ligand for the EGF receptor (EGFR) and a critical molecular component to a number of normal physiological processes including but not limited to tissue injury and wound healing, reproduction, angiogenesis and recently, adipogenesis. Misexpression of HB-EGF is linked to tumor formation and cancer including hepatocellular, pancreatic, gastric, breast, colon and melanoma, gliomas and glioblastomas.

# **Clinical and Translational Updates**

