Dose-dependent effects of Nrf2 on the epidermis in chronic skin inflammationKoch, Ferrarese, Ben-Yehuda Greenwald
et alDis Model Mech (2025) 18 (1)
Abstract: Atopic dermatitis (AD) is a chronic inflammatory skin disease, characterized by an impaired epidermal barrier and immunological alterations. The activity of the cytoprotective NRF2 transcription factor is reduced in the epidermis of AD patients. To determine the functional relevance of this deficiency, we used mice lacking fibroblast growth factor receptors 1 and 2 in keratinocytes (K5-R1/R2 mice), which exhibit several AD-like symptoms. Proteomics analysis of their epidermis revealed reduced Nrf2 activity. This was accompanied by an increase in DNA damage and in the number of senescent cells. Genetic deletion of Nrf2 in keratinocytes of these mice further promoted DNA damage and senescence, but time-limited pharmacological activation of Nrf2 in the skin had a mild protective effect. Surprisingly, long-term genetic activation of Nrf2 in keratinocytes of K5-R1/R2 mice caused strong hyperkeratosis, keratinocyte hyperproliferation, epidermal thickening, increased keratinocyte apoptosis and DNA damage, and altered immune cell composition. These results reveal a complex role of Nrf2 in the epidermis and show the necessity to optimize the duration and intensity of NRF2 activation for the treatment of epidermal alterations in patients with AD.© 2025. Published by The Company of Biologists.
In vitro modelling of anterior primitive streak patterning with human pluripotent stem cells identifies the path to notochord progenitorsRobles-Garcia, Thimonier, Angoura
et alDevelopment (2024) 151 (24)
Abstract: Notochord progenitors (NotoPs) represent a scarce yet crucial embryonic cell population, playing important roles in embryo patterning and eventually giving rise to the cells that form and maintain intervertebral discs. The mechanisms regulating NotoPs emergence are unclear. This knowledge gap persists due to the inherent complexity of cell fate patterning during gastrulation, particularly within the anterior primitive streak (APS), where NotoPs first arise alongside neuro-mesoderm and endoderm. To gain insights into this process, we use micropatterning together with FGF and the WNT pathway activator CHIR9901 to guide the development of human embryonic stem cells into reproducible patterns of APS cell fates. We show that CHIR9901 dosage dictates the downstream dynamics of endogenous TGFβ signalling, which in turn controls cell fate decisions. While sustained NODAL signalling defines endoderm and NODAL inhibition is imperative for neuro-mesoderm emergence, timely inhibition of NODAL signalling with spatial confinement potentiates WNT activity and enables us to generate NotoPs efficiently. Our work elucidates the signalling regimes underpinning NotoP emergence and provides insights into the regulatory mechanisms controlling the balance of APS cell fates during gastrulation.© 2024. Published by The Company of Biologists Ltd.
Treatment with dapagliflozin increases FGF-21 gene expression and reduces triglycerides content in myocardial tissue of genetically obese miceDi Vincenzo, Crescenzi, Granzotto
et alJ Endocrinol Invest (2024) 47 (7), 1777-1786
Abstract: The association between obesity and some cardiovascular complications such as heart failure (HF) is well established, and drugs affecting adiposity are supposed to be promising treatments for these conditions. The sodium-glucose cotransporter-2 inhibitors (SGLT2i) are antidiabetic drugs showing benefits in patients with HF, despite the underlying mechanisms have not been completely understood yet. SGLT2i are supposed to promote systemic effects, such as triglycerides mobilization, through the enhancement of fibroblast growth factor-21 (FGF-21) activity. So, in this study, we evaluated the effects of dapagliflozin treatment on FGF-21 and related receptors (FGF-Rs) gene expression and on lipid content in myocardial tissue in an animal model of genetically induced obesity to unravel possible metabolic mechanisms accounting for the cardioprotection of SGLT2i.Six-week-old C57BL/6J wild-type mice and B6.V-LEP (ob/ob) mice were randomly assigned to the control or treatment group (14 animals/group). Treatment was based on the administration of dapagliflozin 0.15 mg/kg/day for 4 weeks. The gene expression of FGF-21 and related receptors (FGF-R1, FGF-R3, FGF-R4, and β-klotho co-receptor) was assessed at baseline and after treatment by real-time PCR. Similarly, cardiac triglycerides concentration was measured in the control group and treated animals.At baseline, FGF-21 mRNA expression in the heart did not differ between lean and obese ob/ob mice. Dapagliflozin administration significantly increased heart FGF-21 gene expression, but only in ob/ob mice (p < 0.005). Consistently, when measuring the amount of triglycerides in the cardiac tissue, SGLT2i treatment reduced the lipid content in obese ob/ob mice, while no significant effects were observed in treated lean animals (p < 0.001). The overall expression of the FGF-21 receptors was only minimally affected by dapagliflozin treatment both in obese ob/ob mice and in lean controls.Dapagliflozin administration increases FGF-21gene expression and reduces triglyceride content in myocardial tissue of ob/ob mice, while no significant effect was observed in lean controls. These results might help understand the cardiometabolic effects of SGLT2i inducing increased FGF-21 synthesis while reducing lipid content in cardiomyocytes as a possible expression of the switch to different energy substrates. This mechanism could represent a potential target of SGLT2i in obesity-related heart diseases.© 2024. The Author(s), under exclusive licence to Italian Society of Endocrinology (SIE).
Unraveling the Mechanisms of Sensitivity to Anti-FGF Therapies in Imatinib-Resistant Gastrointestinal Stromal Tumors (GIST) Lacking Secondary KIT MutationsBoichuk, Dunaev, Skripova
et alCancers (Basel) (2023) 15 (22)
Abstract: We showed previously that inhibition of KIT signaling in GISTs activates FGFR-signaling pathway rendering cancer cells resistant to receptor tyrosine kinase inhibitor (RTKi) imatinib mesylate (IM) (Gleevec) despite of absence of secondary KIT mutations and thereby illustrating a rationale for the combined (e.g., KIT- and FGFR-targeted) therapies. We show here that long-term culture of IM-resistant GISTs (GIST-R1) with IM substantially down-regulates KIT expression and induces activation of the FGFR-signaling cascade, evidenced by increased expression of total and phosphorylated forms of FGFR1 and 2, FGF-2, and FRS-2, the well-known adaptor protein of the FGF-signaling cascade. This resulted in activation of both AKT- and MAPK-signaling pathways shown on mRNA and protein levels, and rendered cancer cells highly sensitive to pan-FGFR-inhibitors (BGJ 398, AZD 4547, and TAS-120). Indeed, we observed a significant decrease of IC50 values for BGJ 398 in the GIST subclone (GIST-R2) derived from GIST-R1 cells continuously treated with IM for up to 12 months. An increased sensitivity of GIST-R2 cells to FGFR inhibition was also revealed on the xenograft models, illustrating a substantial (>70%) decrease in tumor size in BGJ 398-treated animals when treated with this pan-FGFR inhibitor. Similarly, an increased intra-tumoral apoptosis as detected by immunohistochemical (IHC)-staining for cleaved caspase-3 on day 5 of the treatment was found. As expected, both BGJ 398 and IM used alone lacked the pro-apoptotic and growth-inhibitory activities on GIST-R1 xenografts, thereby revealing their resistance to these TKis when used alone. Important, the knockdown of FGFR2, and, in much less content, FGF-2, abrogated BGJ 398's activity against GIST-R2 cells both in vitro and in vivo, thereby illustrating the FGF-2/FGFR2-signaling axis in IM-resistant GISTs as a primary molecular target for this RTKi. Collectively, our data illustrates that continuous inhibition of KIT signaling in IM-resistant GISTs lacking secondary KIT mutations induced clonal heterogeneity of GISTs and resulted in accumulation of cancer cells with overexpressed FGF-2 and FGFR1/2, thereby leading to activation of FGFR-signaling. This in turn rendered these cells extremely sensitive to the pan-FGFR inhibitors used in combination with IM, or even alone, and suggests a rationale to re-evaluate the effectiveness of FGFR-inhibitors in order to improve the second-line therapeutic strategies for selected subgroups of GIST patients (e.g., IM-resistant GISTs lacking secondary KIT mutations and exhibiting the activation of the FGFR-signaling pathway).