货号 | 产品描述 | 捐献者状况 |
---|---|---|
CIPC-NWC001 | Human iPSC-Derived Neural Progenitor Cells | 健康 |
CIPC-NDC001 | Human iPSC-Derived Neural Progenitor Cells (Parkinson's disease) | 帕金森病 |
多能分化潜力:能够有效分化为多种神经元和胶质细胞,广泛应用于各类神经研究。
高品质来源:包含健康对照组和帕金森病患者组的iPSC来源,确保研究结果的可靠性与对比性。
严格性能表征:通过免疫细胞化学标记验证NPCs的分化潜力,且能够高效分化为功能性多巴胺能神经元,确保研究的可重复性和数据准确性。
疾病建模:NPC常用于阿尔茨海默病、帕金森病、亨廷顿病等神经系统疾病的体外建模,帮助研究疾病的分子机制和药物靶点。
药物筛选:NPC可分化为成熟神经元,适用于高通量药物筛选,特别是对神经元存活、分化及增殖的影响评估; 此外,患者衍生的NPC可实现个性化药物筛选。
神经再生:在再生医学中,NPC有望通过分化为所需神经细胞,用于治疗中枢神经系统损伤,如脊髓损伤、脑损伤等。
神经保护与抗炎作用:NPC可以通过分泌神经营养因子(如BDNF、GDNF等)保护神经,减少神经元退化或死亡;NPC还具有抗炎能力,能够调节局部免疫反应,减轻炎症对组织的损伤。
Human iPSC-Derived Neural Progenitor Cells (Cat. No. CIPC-NWC001) have been identified through immunofluorescence staining to express well-known NPC markers such as Nestin, SOX2 and PAX6.
Human iPSC-Derived Neural Progenitor Cells (Cat. No. CIPC-NWC001) have been identified through flow cytometry to express well-known NPC markers such as SOX1 and PAX6.
货号 | 产品描述 | 捐献者状况 |
---|---|---|
CIPC-DWC001 | Human iPSC-Derived Dopamine Neurons | 健康 |
CIPC-DDC001 | Human iPSC-Derived Dopamine Neurons (Parkinson's disease) | 帕金森病 |
精准模拟:通过专有分化方案,高效再现多巴胺能神经元的功能特性,确保其在功能和形态上高度接近人体神经元。
优化冷冻保存:在最佳分化阶段进行冷冻保存,确保细胞的高存活率和功能性。
严格性能表征:通过免疫荧光染色和电生理学实验验证细胞的功能活性,确保其在研究中的应用效果和可靠性。
帕金森病模型:通过iPSC生成的多巴胺能神经元能够精准模拟帕金森病的病理过程,为研究其发病机制和药物开发提供理想的细胞模型。
药物筛选:可用于检测治疗帕金森病等神经退行性疾病的药物对多巴胺能神经元的作用,特别是在毒性检测及疗效评估中。
细胞替代疗法:通过移植多巴胺能神经元,有望恢复帕金森病患者脑内的多巴胺水平,改善患者的运动功能。
Human iPSC-Derived Neural Progenitor Cells (Cat. No. CIPC-NWC001) have the ability to differentiate into dopamine neurons (Cat. No. CIPC-DWC001).
This data set highlights the intrinsic activity of our Human iPSC-Derived Dopamine Neurons (Cat. No. CIPC-DDC001) cultured on an MEA plate. The neurons exhibit robust spontaneous firing, as visualized in the accompanying heatmap video. The raster plot clearly shows regular network burst firing patterns, indicative of well-coordinated neuronal activity. The photo of the neurons on the MEA plate further confirms the successful culture and network formation, making this data a powerful demonstration of their functional connectivity and suitability for neurophysiological studies.
This data set demonstrates the dose-dependent effects of Haloperidol on neuronal firing. Raster plots and associated firing parameters (for Weighted Mean Firing Rate, Number of Bursts, Burst Duration, Burst Frequency, and Number of Network Bursts, n = 2) are presented for varying Haloperidol concentrations. At 0.1 μM, the firing activity is enhanced, while at 1 μM, the activity diminishes. At 10 μM, the firing is nearly abolished. These results are consistent with findings from Yokoi et al. (2019), where Haloperidol is known to inhibit D2 receptors at low doses and 5-HT2 receptors at high doses (Tyler et al., 2017). This confirms that the relevant receptors in our Human iPSC-Derived Dopamine Neurons (Cat. No. CIPC-DDC001) are functioning normally, underscoring their utility in drug screening and neurotoxicity studies.
ACROBiosystems百普赛斯生物科技股份有限公司
北京:010-53681107
上海:021-50850665
邮箱:(产品订购)order.cn@acrobiosystems.com
邮箱:(技术支持)tech.cn@acrobiosystems.com
邮箱:(廉洁合规)lianjie@acrobiosystems.com
地址:北京经济技术开发区宏达北路8号5号楼4层