登录 | 注册    关注公众号  
微信公众号
搜索
 >  Protein>GITR >GIR-H82F7

Biotinylated Human GITR / TNFRSF18 Protein, Fc,Avitag™

分子别名(Synonym)

AITR,GITR,TNFRSF18,CD357

表达区间及表达系统(Source)

Biotinylated Human GITR, Fc,Avitag (GIR-H82F7) is expressed from human 293 cells (HEK293). It contains AA Gln 26 - Glu 161 (Accession # Q9Y5U5-1).

Predicted N-terminus: Gln 26

Request for sequence

蛋白结构(Molecular Characterization)

GITR Structure

This protein carries a human IgG1 Fc tag at the C-terminus, followed by an Avi tag (Avitag™).

The protein has a calculated MW of 43.3 kDa. The protein migrates as 45-50 kDa under reducing (R) condition (SDS-PAGE) due to glycosylation.

标记(Labeling)

Biotinylation of this product is performed using Avitag™ technology. Briefly, the single lysine residue in the Avitag is enzymatically labeled with biotin.

蛋白标记度(Protein Ratio)

Passed as determined by the HABA assay / binding ELISA.

内毒素(Endotoxin)

Less than 1.0 EU per μg by the LAL method.

纯度(Purity)

>95% as determined by SDS-PAGE.

制剂(Formulation)

Lyophilized from 0.22 μm filtered solution in Tris with Glycine, Arginine and NaCl, pH7.5 with trehalose as protectant.

Contact us for customized product form or formulation.

重构方法(Reconstitution)

Please see Certificate of Analysis for specific instructions.

For best performance, we strongly recommend you to follow the reconstitution protocol provided in the CoA.

存储(Storage)

For long term storage, the product should be stored at lyophilized state at -20°C or lower.

Please avoid repeated freeze-thaw cycles.

This product is stable after storage at:

  1. -20°C to -70°C for 12 months in lyophilized state;
  2. -70°C for 3 months under sterile conditions after reconstitution.

质量管理控制体系(QMS)

  1. 质量管理体系(ISO, GMP)
  2. 质量优势
  3. 质控流程
 

电泳(SDS-PAGE)

GITR SDS-PAGE

Biotinylated Human GITR, Fc,Avitag on SDS-PAGE under reducing (R) condition. The gel was stained with Coomassie Blue. The purity of the protein is greater than 95%.

 

活性(Bioactivity)-ELISA

GITR ELISA

Immobilized Human GITR Ligand, His Tag (Cat. No. GIL-H5249) at 2 μg/mL (100 μL/well) can bind Biotinylated Human GITR, Fc,Avitag (Cat. No. GIR-H82F7) with a linear range of 0.4-6 ng/mL (QC tested).

Protocol

 
评论(0)
 
ACRO质量管理体系
 
 

背景(Background)

Glucocorticoid-induced TNFR-related protein (GITR) is also known as Tumor necrosis factor receptor superfamily member 18 (TNFRSF18), activation-inducible TNFR family receptor (AITR), CD antigen CD357, which is a member of the tumor necrosis factor receptor (TNF-R) superfamily. GITR is receptor for TNFSF18, which seems to be involved in interactions between activated T-lymphocytes and endothelial cells and in the regulation of T-cell receptor-mediated cell death. GITR also mediated NF-kappa-B activation via the TRAF2/NIK pathway.

 

前沿进展

Electroconvulsive Therapy in Cochlear Implant Users
Crotty, Alshehri, Gendre et al
J ECT (2025)
Abstract: Cochlear implant manufacturers currently contraindicate the use of electroconvulsive therapy (ECT) in CI users, citing theoretical evidence of potential harm to the patient or the implant despite a lack of clinical data. We report two uncomplicated cases of ECT in CI users, including the first reported case of bilateral ECT in a patient with bilateral CIs.The first case involves a 66-year-old visually impaired male with bilateral CIs. He suffered from major depressive disorder complicated by refusal of oral intake despite maximal pharmacological therapy. He underwent 9 consecutive cycles of bilateral ECT, after which his psychiatric condition improved. Cochlear implant function remained unchanged following the procedure. The second case involved a 65-year-old female with a left-sided CI and a history of recurrent depressive disorder. Her condition deteriorated with the onset of auditory hallucinations and increased suicidality. She underwent 8 consecutive cycles of unilateral ECT with right-sided electrode placement. Her psychiatric condition improved, and there was no change in CI impedance following the procedure.We report 2 successful cases of ECT in CI users, including the first reported case of bilateral ECT in a patient with bilateral cochlear implants. Further investigation into the safety of ECT in CI users is warranted to ensure that this crucial treatment modality remains available to this vulnerable patient cohort.Copyright © 2025 Wolters Kluwer Health, Inc. All rights reserved.
Design of Porous 3D Interdigitated Current Collectors and Hybrid Microcathodes for Zn-Ion Microcapacitors
Fan, Naresh, Zhu et al
ACS Nano (2025)
Abstract: Zinc-ion microcapacitors (ZIMCs) have gained considerable attention for their intrinsic charge storage mechanisms, combining a battery-type anode with a capacitor-type cathode. However, their development is constrained by challenges related to electrode material selection and microscale device design, especially given the limited footprint of such devices. Despite their potential, exploration of smart electrode processing and hybrid materials for on-chip ZIMCs remains limited. In this work, we introduce 3D gold interdigitated electrodes (3D Au IDEs) as highly porous current collectors, loaded with zinc (Zn) as the anode and hybrid activated carbon coated with PEDOT (AC-PEDOT) as the cathode, using an advanced microplotter fabrication technique. Compared with planar Zn//AC ZIMCs, where Zn and AC materials are loaded onto planar Au IDEs, the 3D Au Zn//AC-PEDOT ZIMCs demonstrate significantly enhanced performance. This is attributed to the critical role of IDEs in increasing the charge storage capacity, improving long-term cycling stability, and boosting capacitive-controlled charge storage contributions. The 3D Au Zn//AC-PEDOT ZIMCs achieve an areal capacity of 1.3 μAh/cm2, peak areal energy of 1.11 μWh/cm2, and peak areal power of 640 μW/cm2, surpassing most reported microsupercapacitors. This study highlights how optimized collectors and hybrid electrodes enhance microdevice charge storage while maximizing performance within a constrained footprint.
Protocol for evaluating neuronal activity and neurotransmitter release following amyloid-beta oligomer injections into the rat hippocampus
Hervé, Bonenfant, Amyot et al
STAR Protoc (2025) 6 (2), 103712
Abstract: In Alzheimer's disease, there is an imbalance in neurotransmitter release and altered neuronal activation. Here, we present a protocol approach to analyze neuronal activity by combining local field potential (LFP) recording with microdialysis within the same animal. We describe steps for measuring glutamate and GABA levels following hippocampal amyloid-beta oligomer (Aβo) injections in rats. We then detail procedures for assembling the electrode and cannula, surgical implantation and simultaneous in vivo LFP recording, interstitial fluid collection, and Aβo injections.Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved.
Can Difluoroethylene Carbonate Replace Fluoroethylene Carbonate for High-Performance Lithium-Ion Cells at High Voltage?
Guan, Ouyang, Wan et al
ACS Appl Mater Interfaces (2025)
Abstract: To date, optimizing electrolytes has become a promising approach to enable high-voltage, high-performance lithium-ion cells. Herein, a study is performed to evaluate the potential of difluoroethylene carbonate (DFEC) to replace fluoroethylene carbonate (FEC) and deliver comparable or even superior performance at high voltage. It is unveiled that moderately increasing lithium salt inside the DFEC-based electrolyte enhances the high-voltage performance of cells, with the DFEC-based electrolyte outperforming the FEC-based counterpart. Moreover, the DFEC-based electrolyte also fits the LiFePO4 system where a high performance is illustrated when charged to 3.8 and 4.0 V. As a result of the low binding energy between DFEC and Li+, an anion-rich solvation structure is formed by the DFEC-based electrolyte, facilitating Li+ intercalation/deintercalation and forming inorganic-rich passivation layers. In addition, the cell's electrode-electrolyte interface is well-protected due to the superior film property of DFEC, where a thin, smooth, and robust passivation layer is generated that efficiently prevents the electrode and electrolyte from side reactions under high voltage. Furthermore, the DFEC-based electrolyte and the cells containing it also demonstrate superior safety properties when exposed to typical safety testing. Hence, DFEC is shown to be a viable alternative to FEC for enabling sound-performance lithium-ion cells at a high voltage.
Showing 1-4 of 310892 papers.
Powered by BizGenius
 
 
货号/价格
产品推荐
文档
联系电话:
+86 400-682-2521(全国)
010-53681107(北京)
021-50850665(上海)
运输方式
订单邮箱:
order.cn@acrobiosystems.com
技术支持邮箱:
tech.cn@acrobiosystems.com
GITR靶点信息
英文全称:Glucocorticoid-induced tumor necrosis factor receptor-related protein
中文全称:糖皮质激素诱导的肿瘤坏死因子受体相关蛋白
种类:Homo sapiens
上市药物数量:0详情
临床药物数量:6详情
最高研发阶段:临床二期
查看更多信息
前沿进展
点击查看详细

消息提示

请输入您的联系方式,再点击提交!

确定