登录 | 注册    关注公众号  
微信公众号
搜索
 >  Kits>Spike RBD >RAS-T017

Anti-SARS-CoV-2 Antibody IgG4 Titer Serologic Assay Kit

For research use only.

组分(Materials Provided)

IDComponentsSize
RAS017-C01Pre-coated with SARS-CoV-2 Spike RBD Microplate1 plate
RAS017-C02Anti-SARS-CoV-2 Antibody (Control, IgG4)10 μg
RAS017-C03HRP-Mouse anti-Human IgG450 μL
RAS017-C0410 x Washing Buffer 50 mL
RAS017-C05Dilution Buffer50 mL
RAS017-C06Substrate Solution12 mL
RAS017-C07Stop Solution7 mL

产品概述(Product Overview)

The ongoing SARS-COV-2 pandemics has sickened 3.7 million people around the world, claiming over 1,000,000 lives. To deal with this global public health crisis, unprecedented efforts are being made to study the virus, SARS-CoV-2. At present, there are 193 new crown vaccine projects registered with the World Health Organization are being developed. To support these studies, ACRO has developed Anti-SARS-CoV-2 subtype antibody Serologic Assay kit including:IgG1, IgG2 IgG3, IgG4.

应用说明(Application)

This kit is developed for serologic test for IgG4 titer of Anti-SARS-CoV-2 antibody in serum/plasma in vitro.

It is for research use only.

重构方法(Reconstitution)

Please see Certificate of Analysis for details of reconstitution instruction and specific concentration.

存储(Storage)

原理(Assay Principles)

This assay kit employs a standard indirect-ELISA format, providing a rapid detection of Anti-SARS-CoV-2 antibodies in serum by SARS-CoV-2 Spike RBD. The Kit consists of Pre-coated with SARS-CoV-2 Spike RBD Microplate, an Anti-SARS-CoV-2 Antibody (Control, IgG4), an HRP-Anti-Human IgG4 secondary antibody.

Your experiment will include 4 simple steps:

a) Add your sample to the plate, take the Anti-SARS-CoV-2 antibody as Control sample. The samples and Control sample are diluted by Dilution Buffer.

b) Add diluted Secondary antibody HRP-Mouse-Anti-Human IgG4 to the plate. The Secondary antibody is diluted by Dilution Buffer.

c) Wash the plate and add TMB or other colorimetric HRP substrate.

d) Stop the substrate reaction by add diluted acid. Absorbance (OD) is calculated as the absorbance at 450 nm minus the absorbance at 630 nm to remove background prior to statistical analysis. The OD Value reflects the amount of antibody bound.

质量管理控制体系(QMS)

  1. 质量管理体系(ISO, GMP)
  2. 质量优势
  3. 质控流程
 

典型数据-Typical Data Please refer to DS document for the assay protocol.

Spike RBD TYPICAL DATA

Detection of Anti-SARS-CoV-2 Antibody, Human IgG4 titer by Indirect-ELISA Assay.
Immobilized SARS-CoV-2 Spike RBD can bind Monoclonal Anti-SARS-CoV-2 Antibody, Human IgG4 in 1:50 human serum. Detection was performed using HRP-Conjugated Anti-human IgG4 antibody with sensitivity of 4.9 ng/mL (QC tested).

 
评论(0)
 
ACRO质量管理体系
 
 

前沿进展

Design, Synthesis and Anti-Influenza Virus Activity of 4-Tert-Butyl-N-(3-Oxo-1-Thia-4-Azaspiro[4.5]Dec-4-yl)Benzamide Derivatives That Target Hemagglutinin-Mediated Fusion
Çınar, Alikadıoğlu, Soylu-Eter et al
Drug Dev Res (2025) 86 (2), e70080
Abstract: Hemagglutinin (HA) is a viral glycoprotein that mediates influenza virus entry into the host cell and is considered a relevant viral target. We here report the identification of a class of 4-tert-butylphenyl-substituted spirothiazolidinones as HA-mediated fusion inhibitors with specific activity against influenza A/H3N2 virus. The novel spirocyclic compounds were achieved by using one-pot cyclocondensation method and the chemical structures were characterized by IR, 1H NMR, 13C NMR, and elemental analysis. Compound 2c, bearing methyl substitutions at positions 2- and 8- of the spiro ring displayed an EC50 value against influenza A/H3N2 virus of 1.3 μM and an antiviral selectivity index of 30. The fusion-inhibiting effect of compound 2c was revealed in the polykaryon assay which is based on cell-cell fusion when influenza virus H3 HA-transfected cells are exposed to low pH. Computer-aided docking was performed to predict the possible binding pocket in the H3 HA trimer. Resistance data and in silico studies indicated that compound 2c has an overlapping binding pocket in the stem region of H3 HA with the known fusion inhibitors TBHQ and arbidol.© 2025 The Author(s). Drug Development Research published by Wiley Periodicals LLC.
Modulation of lipid nanoparticle-formulated plasmid DNA drives innate immune activation promoting adaptive immunity
Tursi, Tiwari, Bedanova et al
Cell Rep Med (2025)
Abstract: Nucleic acid vaccines have grown in importance over the past several years, with the development of new approaches remaining a focus. We describe a lipid nanoparticle-formulated DNA (DNA-LNP) formulation which induces robust innate and adaptive immunity with similar serological potency to mRNA-LNPs and adjuvanted protein. Using an influenza hemagglutinin (HA)-encoding construct, we show that priming with our HA DNA-LNP demonstrated stimulator of interferon genes (STING)-dependent upregulation and activation of migratory dendritic cell (DC) subpopulations. HA DNA-LNP induced superior antigen-specific CD8+ T cell responses relative to mRNA-LNPs or adjuvanted protein, with memory responses persisting beyond one year. In rabbits immunized with HA DNA-LNP, we observed immune responses comparable or superior to mRNA-LNPs at the same dose. In an additional model, a SARS-CoV-2 spike-encoding DNA-LNP elicited protective efficacy comparable to spike mRNA-LNPs. Our study identifies a platform-specific priming mechanism for DNA-LNPs divergent from mRNA-LNPs or adjuvanted protein, suggesting avenues for this approach in prophylactic and therapeutic vaccine development.Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved.
Electro-active evanescent-wave cavity ring-down spectroscopy immunosensor for influenza virus detection
Alnaanah, Qatamin, Mendes et al
Biomed Opt Express (2025) 16 (3), 982-994
Abstract: The early and accurate detection of viral pathogens is critical for effective disease management and public health safety. This study introduces an immunosensor that integrates an electro-active evanescent-wave cavity ring-down spectroscopy (EW-CRDS) platform with a sandwich-type bioassay for label-free detection of the influenza A (H5N1) hemagglutinin (HA) protein, achieving a detection limit of 15 ng/mL. The sensor is constructed by functionalizing the EW-CRDS platform within a micro-electrochemical flow cell with a monoclonal antibody specific to the target antigen. Upon antigen binding, a secondary polyclonal antibody conjugated with a redox-active methylene blue dye is captured. This dye undergoes reversible optical signal changes during redox transitions, which are electrochemically modulated and detected with high sensitivity. Unlike conventional approaches, this sensor employs electrochemical modulation to amplify surface-specific optical signals while reducing processing time and minimizing background noise. The results demonstrate the potential of this technology for real-time monitoring and rapid, reliable diagnosis of infectious diseases, offering excellent sensitivity and ease of operation in detecting influenza viruses. This work highlights the promise of the electro-active EW-CRDS platform for antigen detection in clinical settings.© 2025 Optica Publishing Group.
Pathogenicity and transmissibility of bovine-derived HPAI H5N1 B3.13 virus in pigs
Kwon, Trujillo, Carossino et al
bioRxiv (2025)
Abstract: Since the first emergence of highly pathogenic avian influenza (HPAI) H5N1 viruses in dairy cattle, the virus has continued to spread, reaching 17 states and at least 970 dairy herds in the United States. Subsequently, spillovers of the virus from dairy cattle to humans have been reported. Pigs are an important reservoir in influenza ecology because they serve as a mixing vessel in which novel reassortant viruses with pandemic potential can be generated. Here, we show that oro-respiratory infection of pigs resulted in productive replication of a bovine-derived HPAI H5N1 B3.13 virus. Infectious virus was mainly identified in the lower respiratory tract of principal infected pigs, and sero-conversion was observed in most of the principal pigs at later time points. In one animal, we detected the emergence of a mutation in hemagglutinin (HA) previously associated with increased affinity for "mammalian-type" α2,6-linked sialic acid receptors, but this mutation did not reach consensus levels. Sentinel contact pigs remained sero-negative throughout the study, indicating lack of transmission. The results support that pigs are susceptible to a bovine-derived HPAI H5N1 B3.13 virus, but this virus did not replicate as robustly in pigs as mink-derived HPAI H5N1 and swine-adapted influenza viruses.
Showing 1-4 of 4977 papers.
Powered by BizGenius
 
 
货号/价格
文档
联系电话:
+86 400-682-2521(全国)
010-53681107(北京)
021-50850665(上海)
运输方式
订单邮箱:
order.cn@acrobiosystems.com
技术支持邮箱:
tech.cn@acrobiosystems.com
前沿进展
点击查看详细

消息提示

请输入您的联系方式,再点击提交!

确定