IL-11 promotes Ang II-induced autophagy inhibition and mitochondrial dysfunction in atrial fibroblastsWang, Zhang, Han
et alOpen Life Sci (2025) 20 (1), 20251063
Abstract: This study aimed to investigate potential targets for the pathogenesis of atrial fibrillation to facilitate the development of effective treatments. Atrial fibroblasts were isolated and stimulated with 1 μM angiotensin-II (Ang-II) for 24 h. To increase interleukin 11 (IL-11) expression, overexpression plasmids were transfected into atrial fibroblasts. The role and the underlying mechanism of IL-11 in atrial fibrillation were examined by immunofluorescence, measurements of reactive oxygen species (ROS) and mitochondrial membrane potential (MMP), and western blotting assays. Results demonstrated that IL-11 was upregulated in Ang-II-elicited atrial fibroblasts. Ang-II treatment increases alpha-smooth muscle actin (α-SMA), ROS and MMP levels, and p62 expression but decreases microtubule-associated protein light chain 3 II/I (LC3 II/I) and Beclin-1 expressions in atrial fibroblasts. These effects were further amplified by IL-11 overexpression. Mechanistically, the mammalian target of rapamycin (mTOR) pathway expression was enhanced in Ang-II-induced atrial fibroblasts, which was further elevated by IL-11 upregulation. IL-11 facilitates Ang II-induced differentiation of atrial fibroblasts into myofibroblasts by promoting oxidative stress, mitochondrial dysfunction, and autophagy inhibition through the mTOR pathway.© 2025 the author(s), published by De Gruyter.
Human Recombinant Interleukin-6 and Leukemia Inhibitory Factor Improve Inner Cell Mass Cell Number but Lack Cryoprotective Activities on In Vitro-Produced Bovine BlastocystsOliver, Alward, Rhoads
et alAnimals (Basel) (2025) 15 (5)
Abstract: This work explored whether supplementing recombinant human interleukin-6 (IL6), interleukin-11 (IL11), or leukemia inhibitory factor (LIF) improves IVP bovine embryo development, morphology, and cryosurvivability. Embryos were treated from day 5 to 8 post-fertilization with either the carrier only (control) or 100 ng/mL of IL6, IL11, or LIF. Blastocyst formation and stage were determined on day 7 and 8. A subset of day 8 blastocysts was processed for immunofluorescence to count trophectoderm (TE) and inner cell mass (ICM) cell numbers and another subset was slow frozen and stored in liquid nitrogen until thawing. No differences in the blastocyst rate or blastocyst stage of development were detected. Increases in ICM cell numbers were observed for IL6 and LIF but not the IL11 treatment. None of the cytokine treatments applied before freezing affected post-thaw survival, TE or ICM cell number, or cell death 24 h after thawing. In conclusion, supplementing IL6 and LIF improves ICM cell numbers in non-frozen blastocysts, but there was no evidence that any of these cytokine treatments contain cryoprotective properties in bovine embryos.
Interleukin-11 expressed in the polyp-enriched fibroblast subset is a potential therapeutic target in Peutz-Jeghers syndromeDomènech-Moreno, Lim, Montrose
et alJ Pathol (2025)
Abstract: Peutz-Jeghers syndrome (PJS) is associated with early-onset gastrointestinal polyposis caused by hereditary inactivating pathogenic variants in the tumor suppressor gene STK11 (LKB1). Due to lack of prophylactic therapies, management of PJS polyps requires frequent surveillance. Interestingly, studies in mouse models have revealed that stromal cells drive the polyp formation, but detailed understanding of the cell types and interactions involved has been lacking. Using single-cell RNA sequencing of PJS mouse model polyps, we here identify a polyp-enriched crypt top fibroblast (pCTF) cluster characterized by a transcriptional signature also enriched in PJS patient polyps. The pCTF signature was also noted in primary fibroblasts in vitro following acute STK11 loss. Targeted deletion of Stk11 in crypt top fibroblasts using Foxl1-Cre led to upregulation of the pCTF signature genes and later to polyposis. pCTFs displayed similarity to inflammation-associated fibroblasts, and polyposis was exacerbated by inflammation. Cell-cell communication analysis identified interleukin 11 (IL-11) as a potential pCTF inducer, and consistent with this, IL-11 was required for fibroblast reprogramming toward pCTFs following STK11 loss. Importantly, a neutralizing IL-11 antibody efficiently reduced polyp formation in a PJS model indicating a key, targetable role for IL-11 in polyp development. Together the results characterize pCTFs as a PJS polyp-enriched fibroblast subset and identify IL-11 as a key mediator of fibroblast reprogramming and a potential therapeutic target in PJS. © 2025 The Pathological Society of Great Britain and Ireland.© 2025 The Pathological Society of Great Britain and Ireland.
Activation of endogenous retroviruses characterizes the maternal-fetal interface in the BTBR mouse model of autism spectrum disorderCipriani, Camaioni, Tartaglione
et alSci Rep (2025) 15 (1), 8271
Abstract: Endogenous retroviruses (ERVs) are genetic elements derived from a process of germline infection by exogenous retroviruses. Some ERVs have been co-opted for physiological functions, and their activation has been associated with complex diseases, including Autism Spectrum Disorder (ASD). We have already demonstrated an abnormal expression of ERVs in the BTBR T + tf/J (BTBR) mouse model of ASD during intrauterine life till adulthood. Thus, starting from the assumptions that ERVs may contribute to the derailment of neurodevelopment and that ASD has fetal origins as a consequence of adverse intrauterine conditions, the present study aims to characterize the transcriptional activity of selected ERVs (MusD, IAP, Syn-A, Syn-B, ARC and GLN), LINE-1, inflammatory mediators (IL-6, IL-10, IL-11 CXCL-1) at the maternal-fetal interface and in dissected embryos from BTBR mice. Our results highlight the deregulation of ERVs and inflammatory mediators at the maternal-fetal interface, and in cephalic and non-cephalic embryonic tissues from BTBR compared to C57BL/6 J. Several correlations among ERV expression levels emerged in different tissues from C57BL/6 J mice while, in BTBR mice, no correlations were found, suggesting that in this model, the acquisition of autistic-like traits might be linked to the dysregulation of ERV activity occurring during intra-uterine life.© 2025. The Author(s).