Using in vivo calcium imaging to examine joint neuron spontaneous activity and home cage analysis to monitor activity changes in mouse models of arthritisGoodwin, Marin, Walker
et alArthritis Res Ther (2025) 27 (1), 67
Abstract: Studying pain in rodent models of arthritis is challenging. For example, assessing functional changes in joint neurons is challenging due to their relative scarcity amongst all sensory neurons. Additionally, studying pain behaviors in rodent models of arthritis poses its own set of difficulties. Commonly used tests, such as static weight-bearing, often require restraint, which can induce stress and consequently alter nociception. The aim of this study was to evaluate two emerging techniques for investigating joint pain in mouse models of rheumatoid- and osteo-arthritis: In vivo calcium imaging to monitor joint afferent activity and group-housed home cage monitoring to assess pain-like behaviors. Specifically, we examined whether there was increased spontaneous activity in joint afferents and reduced locomotor activity following induction of arthritis.Antigen induced arthritis (AIA) was used to model rheumatoid arthritis and partial medial meniscectomy (PMX) was used to model osteoarthritis. Group-housed home cage monitoring was used to assess locomotor behavior in all mice, and weight bearing was assessed in PMX mice. In vivo calcium imaging with GCaMP6s was used to monitor spontaneous activity in L4 ganglion joint neurons retrogradely labelled with fast blue 2 days following AIA and 13-15 weeks following PMX model induction. Cartilage degradation was assessed in knee joint sections stained with Safranin O and fast green in PMX mice.Antigen induced arthritis produced knee joint swelling and PMX caused degeneration of articular cartilage in the knee. In the first 46 h following AIA, mice travelled less distance and were less mobile compared to their control cage mates. In contrast, no such differences were found between PMX and sham mice when measured between 4-12 weeks post-surgery. A larger fraction of joint neurons showed spontaneous activity in AIA but not PMX mice. Spontaneous activity was mostly displayed by medium-sized neurons in AIA mice and was not correlated with any of the home cage behaviors.Group-housed home cage monitoring revealed locomotor changes in AIA mice, but not PMX mice (with n = 10/group). In vivo calcium imaging can be used to assess activity in multiple retrogradely labelled joint afferents and revealed increased spontaneous activity in AIA but not PMX mice.© 2025. The Author(s).
Identification of Ferroptosis- and Hypoxia-related Genes in iPSC-derived Oligodendrocyte Precursor Cells from Multiple Sclerosis PatientsZhang, Wang, Sui
et alJ Vis Exp (2025)
Abstract: Multiple sclerosis (MS) is a chronic inflammatory disorder characterized by demyelination, with failed remyelination leading to progressive axon loss in chronic stages. Oligodendrocyte precursor cells (OPCs) are critical for remyelination. Recent studies suggest that both hypoxia and ferroptosis play crucial roles in the dysfunctional differentiation of OPCs. This research seeks to identify key genes linked to hypoxia and ferroptosis and immune infiltration characteristics in OPCs derived from induced pluripotent stem cells (iPSCs) of MS patients and to construct a diagnostic model centered on these pivotal genes. We analyzed gene expression data from the GSE196575 and GSE147315 datasets and compared MS patients with healthy individuals. Using weighted gene coexpression network analysis (WGCNA), we pinpointed primary module genes and essential genes associated with hypoxia, ferroptosis, and MS. The ferroptosis Z score and the hypoxia Z score calculated via gene set variation analysis (GSVA) were greater in the iPSC-derived OPCs of MS patients than those of the control group. The implicated genes are predominantly linked to the PI3K/Akt/mTOR pathway, as identified through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. A protein-protein interaction (PPI) network of crucial genes revealed 10 central hub genes (COL4A1, COL4A2, ITGB5, ITGB1, ITGB8, ITGAV, VIM, FLNA, VCL, and SPARC). The robust expression of ITGB1, ITGB8, and VIM was validated in the GSE151306 dataset, supporting their role as key hub genes. Additionally, an interaction network between transcription factors (TFs) and hub genes was established via Transcriptional Regulatory Relationships Unraveled by Sentence-based Text (TRRUST), which identified five key TFs. The results of this study could help elucidatenovel biomarkers or therapeutic targets for MS.
Zinc finger protein Znf296 is a cardiac-specific splicing regulator required for cardiomyocyte formationLi, Yang, Wang
et alAm J Pathol (2025)
Abstract: Heart formation and function are tightly regulated at transcriptional and post-transcriptional levels. The dysfunction of cardiac cell-specific regulatory genes leads to various heart diseases. Heart failure is one of the most severe and complex cardiovascular diseases, which could be fatal if not treated promptly. However, the exact causes of heart failure are still unclear, especially at the level of single-gene causation. Here, we uncover an essential role for the zinc finger protein Znf296 in heart development and cardiac contractile function. Specifically, znf296-deficient zebrafish embryos display heart defects characterized by decreased systolic and diastolic capacities of the ventricle and atrium. This is associated with reduced numbers and disrupted structural integrity of cardiomyocytes, including disorganized cytoskeleton and absence of sarcomeres. Mechanistically, the loss of Znf296 alters the alternative splicing of a subset of genes important for heart development and disease, such as mef2ca, sparc, tpm2, camk2g1, tnnt3b and pdlim5b. Furthermore, we demonstrate that Znf296 biochemically and functionally interacts with Myt1la in regulating cardiac-specific splicing and heart development. Importantly, we show that ZNF296 also regulates alternative splicing in human cardiomyocytes to maintain structural integrity. These results suggest that Znf296 plays a conserved role for the differentiation of cardiomyocytes and the proper function of the cardiovascular system.Copyright © 2025. Published by Elsevier Inc.
Cerebrospinal fluid proteomics identification of biomarkers for amyloid and tau PET stagesWang, Chen, Gong
et alCell Rep Med (2025)
Abstract: Accurate staging of Alzheimer's disease (AD) pathology is crucial for therapeutic trials and prognosis, but existing fluid biomarkers lack specificity, especially for assessing tau deposition severity, in amyloid-beta (Aβ)-positive patients. We analyze cerebrospinal fluid (CSF) samples from 136 participants in the Alzheimer's Disease Neuroimaging Initiative using more than 6,000 proteins. We apply machine learning to predict AD pathological stages defined by amyloid and tau positron emission tomography (PET). We identify two distinct protein panels: 16 proteins, including neurofilament heavy chain (NEFH) and SPARC-related modular calcium-binding protein 1 (SMOC1), that distinguished Aβ-negative/tau-negative (A-T-) from A+ individuals and nine proteins, such as HCLS1-associated protein X-1 (HAX1) and glucose-6-phosphate isomerase (GPI), that differentiated A+T+ from A+T- stages. These signatures outperform the established CSF biomarkers (area under the curve [AUC]: 0.92 versus 0.67-0.70) and accurately predicted disease progression over a decade. The findings are validated in both internal and external cohorts. These results underscore the potential of proteomic-based signatures to refine AD diagnostic criteria and improve patient stratification in clinical trials.Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved.