微电极阵列(Microelectrode Array, MEA)是一种高度先进的电生理检测技术,广泛应用于神经科学、发育生物学、药物开发等前沿领域。MEA系统通过在培养板表面嵌入多个微电极,能够同时监测和记录多个细胞的电生理活动。这些微电极与细胞直接接触,形成稳定的细胞-电极界面,确保细胞产生的电信号能够精准、快速地传递至电极上,并被MEA系统捕获,转换为可分析的电生理数据。
MEA技术的显著优势在于其高效性、无创性和长期监测能力。与传统的电生理技术不同,MEA可以在不破坏细胞结构的情况下,对细胞网络进行长期、实时的电生理监测。这使得研究人员能够观察神经元网络活动的动态变化,捕捉复杂的信号模式,评估神经回路的健康状况,以及研究疾病模型中的异常活动。此外,MEA还支持高通量筛选,适用于药物开发中的神经毒性评估和药物效力测试,为新药筛选提供可靠的电生理数据支持。
MEA服务案例
This data set highlights the intrinsic activity of our Human iPSC-Derived Dopamine Neurons (Cat. No. CIPC-DDC001) cultured on an MEA plate. The neurons exhibit robust spontaneous firing, as visualized in the accompanying heatmap video. The raster plot clearly shows regular network burst firing patterns, indicative of well-coordinated neuronal activity. The photo of the neurons on the MEA plate further confirms the successful culture and network formation, making this data a powerful demonstration of their functional connectivity and suitability for neurophysiological studies.
This data set demonstrates the dose-dependent effects of Haloperidol on neuronal firing. Raster plots and associated firing parameters (for Weighted Mean Firing Rate, Number of Bursts, Burst Duration, Burst Frequency, and Number of Network Bursts, n = 2) are presented for varying Haloperidol concentrations. At 0.1 μM, the firing activity is enhanced, while at 1 μM, the activity diminishes. At 10 μM, the firing is nearly abolished. These results are consistent with findings from Yokoi et al. (2019), where Haloperidol is known to inhibit D2 receptors at low doses and 5-HT2 receptors at high doses (Tyler et al., 2017). This confirms that the relevant receptors in our Human iPSC-Derived Dopamine Neurons (Cat. No. CIPC-DDC001) are functioning normally, underscoring their utility in drug screening and neurotoxicity studies.
ACROBiosystems百普赛斯生物科技股份有限公司
北京:010-53681107
上海:021-50850665
邮箱:(产品订购)order.cn@acrobiosystems.com
邮箱:(技术支持)tech.cn@acrobiosystems.com
邮箱:(廉洁合规)lianjie@acrobiosystems.com
地址:北京经济技术开发区宏达北路8号5号楼4层