登录 | 注册    关注公众号  
微信公众号
搜索
 >  Protein>LGR4 >LG4-H52H3

Human LGR4 / GPR48 protein, His Tag

分子别名(Synonym)

LGR4, GPR48, G-protein coupled receptor 48, Leucine-rich repeat-containing G-protein coupled receptor 4

表达区间及表达系统(Source)

Human LGR4, His Tag (LG4-H52H3) is expressed from human 293 cells (HEK293). It contains AA Ala 25 -Thr 544 (Accession # Q9BXB1-1).

Request for sequence

蛋白结构(Molecular Characterization)

LGR4 Structure

This protein carries a polyhistidine tag at the C-terminus.

The protein has a calculated MW of 58.8 kDa. The protein migrates as 70-100 kDa under reducing (R) condition (SDS-PAGE) due to glycosylation.

内毒素(Endotoxin)

Less than 1.0 EU per μg by the LAL method.

纯度(Purity)

>85% as determined by SDS-PAGE.

制剂(Formulation)

Lyophilized from 0.22 μm filtered solution in PBS, pH7.4 with trehalose as protectant.

Contact us for customized product form or formulation.

重构方法(Reconstitution)

Please see Certificate of Analysis for specific instructions.

For best performance, we strongly recommend you to follow the reconstitution protocol provided in the CoA.

存储(Storage)

For long term storage, the product should be stored at lyophilized state at -20°C or lower.

Please avoid repeated freeze-thaw cycles.

This product is stable after storage at:

  1. -20°C to -70°C for 12 months in lyophilized state;
  2. -70°C for 3 months under sterile conditions after reconstitution.

质量管理控制体系(QMS)

  1. 质量管理体系(ISO, GMP)
  2. 质量优势
  3. 质控流程
 

电泳(SDS-PAGE)

LGR4 SDS-PAGE

Human LGR4, His Tag on SDS-PAGE under reducing (R) condition. The gel was stained with Coomassie Blue. The purity of the protein is greater than 85%.

 

活性(Bioactivity)-ELISA

LGR4 ELISA

Immobilized Human R‑Spondin 3 at 2 μg/mL (100 μL/well) can bind Human LGR4, His Tag (Cat. No. LG4-H52H3) with a linear range of 10-78 ng/mL (QC tested).

Protocol

 

活性(Bioactivity)-SPR

LGR4 SPR

Human R-Spondin 3 immobilized on CM5 Chip can bind Human LGR4, His Tag (Cat. No. LG4-H52H3) with an affinity constant of 0.394 μM as determined in a SPR assay (Biacore T200) (Routinely tested).

Protocol

 
评论(0)
 
ACRO质量管理体系
 
 

背景(Background)

The fourth member of the leucine-rich repeat-containing GPCR family (LGR4, frequently referred to as GPR48) together with its family members LGR5 and -6, bind to R-spondins (RSPOs)-1–4 and result in Wnt signaling potentiation. In addition, LGR4 (as well as LGR5 and -6) is implicated in multiple cancers and promotes invasion and metastasis in colorectal, prostate, and cervical cancer cell lines.

 

前沿进展

Generation and characterisation of seven induced pluripotent stem cell lines from two patients with Parkinson's disease carrying the pathological variant c.1087G>T of the LGR4 gene
Podvysotskaya, Grigor'eva, Malakhova et al
Vavilovskii Zhurnal Genet Selektsii (2025) 29 (1), 15-25
Abstract: Parkinson's disease is a neurodegenerative disorder affecting dopaminergic neurons of the substantia nigra pars compacta. The known pathological genetic variants may explain the cause of only 5 % of cases of the disease. In our study, we found two patients with a clinical diagnosis of Parkinson's disease with the genetic variant c.1087G>T (p.Gly363Cys) of the LGR4 gene. The LGR4 gene encodes the membrane receptor LGR4 (leucine rich repeat containing G protein-coupled receptor 4) associated with the G protein. We hypothesize that the LGR4 gene may be either a direct cause or a risk factor for this disease, since it is one of the main participants of the WNT/β-catenin signalling pathway. This signalling pathway is necessary for the proliferation of neurons during their differentiation, which may lead to Parkinson's disease. To study the relationship between this genetic variant and Parkinson's disease, an ideal tool is a cellular model based on induced pluripotent stem cells (iPSCs) and their differentiated derivatives, dopaminergic neurons. We reprogrammed the peripheral blood mononuclear cells of the two patients with the c.1087G>T variant of the LGR4 gene with non-integrating episomal vectors expressing OCT4, SOX2, KLF4, LIN28, L-MYC and mp53DD proteins. The obtained seven lines of induced pluripotent stem cells were characterised in detail. The iPSCs lines obtained meet all the requirements of pluripotent cells, namely, they stably proliferate, form colonies with a morphology characteristic of human pluripotent cells, have a normal diploid karyotype, express endogenous alkaline phosphatase and pluripotency markers (OCT4, NANOG, SSEA-4 and SOX2) and are capable to differentiate into derivatives of the three germ layers. The iPSC lines obtained in this work can be used as a tool to generate a relevant model to study the effect of the pathological variant c.1087G>T of the LGR4 gene on dopaminergic neuron differentiation.Copyright © AUTHORS.
Deficiency of neuronal LGR4 increases energy expenditure and inhibits food intake via hypothalamic leptin signaling
Zhang, Li, Gao et al
EMBO Rep (2025)
Abstract: The metabolic effects of leucine-rich repeat-containing G protein-coupled receptor 4 (LGR4) remain largely unknown. Here, we showed that knockdown of Lgr4 in nestin progenitor or Sp1 mature neurons reduced high fat diet (HFD)-induced obesity by increasing energy expenditure and inhibiting food intake. Deficiency of LGR4 in AgRP neurons increased energy expenditure, and inhibited food intake, leading to alterations in glucose and lipid metabolism. Knock-down of Lgr4 in Sf1 neurons enhanced energy expenditure, reduced adiposity, and improved glucose and lipid metabolism. The metabolic benefits of neuronal LGR4 occurred via improvement of leptin signaling in AgRP and Sf1 neurons. Knockdown of Lgr4 in nestin, Sp1, AgRP or Sf1 neurons decreased hypothalamic levels of SOCS-3, and increased phosphorylation of STAT3. These alterations were associated with a significant reduction in the hypothalamic levels of β-catenin. Inhibition of β-catenin signaling by Dkk1 significantly attenuated the decrement of phospho-STAT3 and concurrent increase of SOCS-3 induced by Rspondin 3, an endogenous ligand for LGR4. Our results thus demonstrate that hypothalamic LGR4 may promote energy conversation by increasing food intake and decreasing energy expenditure. Deficiency of neuronal LGR4 improves hypothalamic leptin sensitivity via suppression of β-catenin signaling.© 2025. The Author(s).
Receptor deorphanization in starfish reveals the evolution of relaxin signaling as a regulator of reproduction
Feng, Escudero Castelán, Hossain et al
BMC Biol (2025) 23 (1), 59
Abstract: Relaxins are a family of peptides that regulate reproductive physiology in vertebrates. Evidence that this is an evolutionarily ancient role of relaxins has been provided by the discovery of two relaxin-like gonad-stimulating peptides (RGP1 and RGP2) that trigger spawning in starfish. The main aim of this study was to identify the receptor(s) that mediate(s) the effects of RGP1 and RGP2 in starfish.Here we show that RGP1 and RGP2 belong to a family of peptides that include vertebrate relaxins, Drosophila insulin-like peptide 8 (Dilp8), and other relaxin-like peptides in several protostome taxa. An ortholog of the human relaxin receptors RXFP1 and RXFP2 and the Drosophila receptor LGR3 was identified in starfish (RXFP/LGR3). In Drosophila, but not in humans and other vertebrates, there is a paralog of LGR3 known as LGR4, and here an LGR4-type receptor was also identified in starfish. In vitro pharmacological experiments revealed that both RGP1 and RGP2 act as ligands for RXFP/LGR3 in the starfish Acanthaster cf. solaris and Asterias rubens, but neither peptide acts as a ligand for LGR4 in these species.Discovery of the RXFP/LGR3-type receptor for RGP1 and RGP2 in starfish provides a new insight into the evolution of relaxin-type signaling as a regulator of reproductive processes. Furthermore, our findings indicate that RXFP/LGR3-type receptors have been lost in several phyla, including urochordates, mollusks, bryozoans, platyhelminthes, and nematodes.© 2025. The Author(s).
Genetic-epigenetic interactions (meQTLs) in orofacial clefts etiology
Machado-Paula, Romanowska, Lie et al
medRxiv (2025)
Abstract: Nonsyndromic orofacial clefts (OFCs) etiology involves multiple genetic and environmental factors with over 60 identified risk loci; however, they account for only a minority of the estimated risk. Epigenetic factors such as differential DNA methylation (DNAm) are also associated with OFCs risk and can alter risk for different cleft types and modify OFCs penetrance. DNAm is a covalent addition of a methyl (CH3) group to the nucleotide cytosine that can lead to changes in expression of the targeted gene. DNAm can be affected by environmental influences and genetic variation via methylation quantitative loci (meQTLs). We hypothesize that aberrant DNAm and the resulting alterations in gene expression play a key role in the etiology of OFCs, and that certain common genetic variants that affect OFCs risk do so by influencing DNAm.We used genotype from 10 cleft-associated SNPs and genome-wide DNA methylation data (Illumina 450K array) for 409 cases with OFCs and 456 controls and identified 23 cleft-associated meQTLs. We then used an independent cohort of 362 cleft-discordant sib pairs for replication. We used methylation-specific qPCR to measure methylation levels of each CpG site and combined genotypic and methylation data for an interaction analysis of each SNP-CpG pair using the R package MatrixeQTL in a linear model. We also performed a Paired T-test to analyze differences in DNA methylation between each member of the sibling pairs.We replicated 9 meQTLs, showing interactions between rs13041247 (MAFB) - cg18347630 (PLCG1) (P=0.04); rs227731 (NOG) - cg08592707 (PPM1E) (P=0.01); rs227731 (NOG) - cg10303698 (CUEDC1) (P=0.001); rs3758249 (FOXE1) - cg20308679 (FRZB) (P=0.04); rs8001641 (SPRY2) - cg19191560 (LGR4) (P=0.04); rs987525(8q24) - cg16561172(MYC) (P=0.00000963); rs7590268(THADA) - cg06873343 (TTYH3) (P=0.04); rs7078160 (VAX1) - cg09487139 (P=0.05); rs560426 (ABCA4/ARHGAP29) - cg25196715 (ABCA4/ARHGAP29) (P=0,03). Paired T-test showed significant differences for cg06873343 (TTYH3) (P=0.04); cg17103269 (LPIN3) (P=0.002), and cg19191560 (LGR4) (P=0.05).Our results confirm previous evidence that some of the common non-coding variants detected through GWAS studies can influence the risk of OFCs via epigenetic mechanisms, such as DNAm, which can ultimately affect and regulate gene expression. Given the large prevalence of non-coding SNPs in most OFCs genome wide association studies, our findings can potentially address major knowledge gaps, like missing heritability, reduced penetrance, and variable expressivity associated with OFCs phenotypes.
Showing 1-4 of 374 papers.
Powered by BizGenius
 
 
货号/价格
文档
联系电话:
+86 400-682-2521(全国)
010-53681107(北京)
021-50850665(上海)
运输方式
订单邮箱:
order.cn@acrobiosystems.com
技术支持邮箱:
tech.cn@acrobiosystems.com
前沿进展
点击查看详细

消息提示

请输入您的联系方式,再点击提交!

确定